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ON THE SHAPE OF TETRAHEDRA FROM BISECTION 

ANWEI LIU AND BARRY JOE 

ABSTRACT. We present a procedure for bisecting a tetrahedron T successively 
into an infinite sequence of tetrahedral meshes j-0, 91, g2, ..., which 
has the following properties: (1) Each mesh Sfn is conforming. (2) There are 
a finite number of classes of similar tetrahedra in all the 3n , n > 0. (3) 
For any tetrahedron T7 in S7n, jj(T) > cl1 (T), where tI is a tetrahedron 
shape measure and cl is a constant. (4) 3(j) < c2 (1/2)nI3j(T) , where d(T') 
denotes the diameter of tetrahedron T1 and c2 is a constant. 

Estimates of cl and c2 are provided. Properties (2) and (3) extend similar 
results of Stynes and Adler, and of Rosenberg and Stenger, respectively, for 
the 2-D case. The diameter bound in property (4) is better than one given by 
Kearfott. 

1. INTRODUCTION 

Let T(to, tl , t2, t3) be a tetrahedron with vertices to, tl , t2, t3 . Using the 
midpoint t of one of the edges, t It2 say, and the face tot3t, we can bisect T 
into two subtetrahedra Tl(to, tl , t, t3) and TI(to, t, t2, t3). Next, these two 
tetrahedra can be bisected, producing four subtetrahedra. This process can be 
repeated iteratively to produce an infinite sequence of tetrahedral meshes J?, 
g- , g92, ... , where ,n contains 2n tetrahedra. 

In the bisection method of [5], which works for simplices of any dimension, 
the longest edge is always chosen to be bisected. Let 3(S) denote the diameter 
(length of longest edge) of a simplex S. In [5] a bound is derived on how fast 
the diameters of the simplices in the sequence of meshes converge to zero. In 
the tetrahedron case, this bound is 3(T7) < (V3/2)Ln/3J3(1), where Ti is a 
tetrahedron in S9n . In the two-dimensional or triangle case, [9, 11, 1] contain 
results on the bisection method in which the longest edge of each triangle is 
bisected. In [11] and [1] diameter bounds are given which improve on the 
bound in [5] (for the 2-D case). 

In this paper, we present a bisection procedure for tetrahedra which does 
not always bisect the longest edge; instead a mapping to a special tetrahedron is 
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used to choose the bisected edge. We show that this procedure has the following 
properties: 

(1) Each mesh '7n is conforming, where a conforming mesh is one in which 
the intersection of any two tetrahedra TI, T2 of the mesh is either a 
common face of TI and T2, or a common edge, or a common vertex, 
or empty. 

(2) There are a finite number of classes of similar tetrahedra in all the JT, 
n > 0. 

(3) q(Tn) > cl(T), where C is a tetrahedron shape measure and cl is a 
positive constant independent of T. 

(4) 3(17) < c2(1/2)n/30(T), where c2 is a positive constant independent of 
T. 

Property (1) is not generally satisfied if the longest edge is always bisected. 
Property (2) generalizes a similar result for the 2-D case, given in [11] and [1]. 
The diameter bound in property (4) is better than that given in [5]. Property 
(3) is important for the local refinement of tetrahedral finite element meshes 
in which it is desired that poorly-shaped tetrahedra be avoided [3] (to get bet- 
ter approximations and to avoid ill-conditioned matrices in the finite element 
method). In two dimensions, it is shown in [9] that 0 > a/2, where a is the 
minimum interior angle in the original triangle and 0 is any interior angle in a 
refined triangle. So property (3) extends this result to three dimensions (using 
a different shape measure and a smaller constant). There has been no previous 
result on the shape of the refined tetrahedra. 

These properties should be useful in designing local refinement algorithms 
for tetrahedral meshes, which are a generalization of Rivara's algorithms for 
triangular meshes [6, 7, 8]. After describing the new tetrahedron shape measure 
q in ?2 and our bisection procedure based on a special tetrahedron in ?3, we 
establish the above properties in ?4. Estimates of the constants cl and c2 are 
provided in ?5. 

2. A NEW TETRAHEDRON SHAPE MEASURE 

Tetrahedron shape measures are used to measure the shape of different tetra- 
hedra. Two commonly used shape measures are the aspect ratio p (ratio of 
inradius to circumradius) and the minimum solid angle 0min (each tetrahedron 
has 4 solid angles) [3, 4]. For these two measures, the highest value occurs for a 
regular tetrahedron and values approaching zero occur for poorly-shaped tetra- 
hedra (e.g., tetrahedra with four nearly coplanar vertices). The expressions for 
both p and 0min are complicated. In this section, we introduce a new shape 
measure q with a simple expression, and use it to prove properties (3) and (4) 
of our bisection procedure. More details about the application of q in local 
refinement algorithms and some comparisons between j, p, and 0min will be 
addressed in a later paper. 
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r3(-3a/6, 0, -T6a/3) 

r2(0, a/2, 0) 

ro(-3a/2, 0, 0) 

rl(O, -a/2, 0) 

FIGURE 1. Regular tetrahedron R 

Definition 1. For any (nondegenerate) tetrahedron T(to, tl, t2, t3), define the 
3 by 3 nonsingular matrix T = [ti - to, t2 - to, t3 - to]. Note that the matrix 
has the same name as the tetrahedron but italic font is used instead of bold 
font, and T depends on the ordering of vertices of T. For any two tetrahedra 
S(so, SI, s2 5 S3) and T(to, tl, t2, t3), define the 3 by 3 matrices M(S, T) = 
TS-1 and A(S, T) = MT(S, T)M(S, T). Note that M and A also depend on 
the ordering of tetrahedron vertices, and M is the matrix involved in the affine 
transformation from points of S to points of T such that ti = M(S, T)sj + b, 
0 < i < 3, where b = to - M(S, T)so. 

Definition 2. Let T(to, tl, t2, t3) be any tetrahedron, and R(ro, r1, r2, r3) be 
a regular tetrahedron with the same volume as T, e.g., as shown in Figure 1. 
Define the tetrahedron shape measure j(T) = 3VA)(A2)3/(1 + A2 + A3), where 

Al A2, and A3 are the eigenvalues of the matrix A(R, IT). Note that the three 
eigenvalues are positive since A is positive definite, and 0 < j(T) < 1 with 

j(T) = 1 if and only if Al = A2 = A3 . 

Theorem 1. For any tetrahedron T(to, t1, t2, t3), we have 

= 
12(3v)2/3 

where v is the volume of T and the li are the lengths of the edges of T. 
Furthermore, q (T) is independent of the ordering of vertices of T, R and of the 
vertex coordinates of R. 

Proof. We first let R(ro, r1, r2, r3) be the regular tetrahedron with the same 
volume as T(to, tl, t2, t3) and the vertex coordinates of Figure 1. Let T = 
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[tl - to, t2 - to, t3- to] and R = [r - ro, r2- ro, r3- ro]. Then 

v-r/2 vr3/2 v3/3- I 
-/4 v -1 -1/ 

(1) R = a -1/2 1/2 0 R1 I _ 1/v 1 -1/f6 
I O 3 a 0 0 3/6 

where a = (6vl'v)1/3 and v is the volume of T. Let di = (t1 - ti)T(tj - ti), 
O < i <j < 3. Then 

doi (dol + do2- dl2)/2 (dol + do3- d3)/2 

(2) TT T = (dol + do2-d ld2)/2 do2 (do2 + do3 -d23)/2 
(doL + do3- d13)/2 (do2 +do3 -d23)/2 do3 

From (1), (2), and A(R, T) = MT(R, T)M(R, T) = (R-1)TTTTR-1, we ob- 
tain 

[(2do, + 2dO2 - d12)/3 # 1 
(3) A(R, T) = a-2 #d12 

() # (3do3 + 3dl3 + 3d23 dol - do2 - dl2)/6J 

where # denotes a value which is irrelevant. Then 

Al + A2 + A3 = trace(A(R, T)) 

= (dol + do2 + do3 + d12 + d13 + d23)/(2a2). 

Since R and T have the same volume, det(M(R, T)) = I 1. So 

(5) A)12)3 = det(A(R, T)) = 1. 

From (4), (5), and Definition 2, 

(6) q (T) ~~3 V rd-et (A(R, I5)) _ 12 (3v)2/3 
(6) ?(T) = - trace(A(R, T)) = 6 

I 
' 

where the 1i are the lengths of the edges of T. 
Now we allow the vertices of T and R to be permuted and different vertex 

coordinates for R. Let T, R, AfM(R, T), and A(R, T) be the resulting ma- 
trices. Then T = TP1L1P2 and T? = QRP3L2P4, where Q is an orthogonal 
matrix, the Pi are permutation matrices, and each Li is either the identity 
matrix I or 

L=[0 ? 
L= O 1 0l 

because [tl - t3, t2 - t3, to - t3] = [tl - to, t2 - to, t3 - to]L = TL. Since 
L-1 = L, we have 

A(R, T) = (R-l )TTTTl 

= Q(R) TP3L2fP4P2TLpTPLTTTTPlLlP2P4TL2P3TRl QT. 
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Let A(R, T) = QTA(R, T)Q. If P is a permutation matrix, then pTT TP 
just applies a symmetric permutation to the matrix of (2). Similarly, 

d13 (d13 + d23 - dl2)/2 (do3 + d13 - dol)/21 
LTTTTL = (d13 + d23-d12)/2 d23 (do3 + d23-do2)/2 

(do3 + d13 - dol)/2 (do3 + d23 - do2)/2 do3 

Therefore, A(R, T) has the same form as (3), with the dij permuted, and 
(4), (5), and (6) are unchanged if A is replaced with A. Finally, the eigen- 
values Ai of A(R, T) and A(R, T) = QA(R, T)QT are identical, so I(T) = 

12(3v)2/3/ E6 1/ is independent of the ordering of vertices of T, R and of 
the vertex coordinates of R. O 

Now we give a geometric explanation of I(T) . Let 0 be the inscribed sphere 
in the regular tetrahedron R and r be its radius. The affine transformation 
y = M(R, T)x + b, which transforms the points of R into the points T, 
transforms the sphere 0 into an inscribed ellipsoid E in T. Let the equation 
of 0 be 

(x + bo)T(X + bo) = r2. 

Then the equation of E is 

(y + b1)T(M-1 (R, T))TM-1(R, T)(y + b1) = r2. 

Let a, fi, y be the half-lengths of the three principal axes inside the ellipsoid, 
and A1, )2, and A3 be the eigenvalues of MT(R, T)M(R, T). After a trans- 
lation and a rotation, the equation of the ellipsoid becomes 

Xi2 X2 2 
X1 + 2 + 3 = r2 

where (XI, X2, x3) is any point on the ellipsoid. So a 2 = Air2, fl2 =- 2r2, and 
y2 = )3r2. Since A1A2)3 = 1, we have r2 - ra2fl.2y2. From Definition 2, 

-T) 
3 VA -i)& _ 3 a a2f82y2 

Al +)2+)L3 a2+fl2+y2 

So q (T) is the ratio of the geometric mean to the arithmetic mean of a 2, fl2, 
and y2 . In some sense we can say that q (T) reflects the shape of the inscribed 
ellipsoid E and hence the shape of T. 

From Definition 2, Theorem 1, and the above explanation, it follows that 
(T) = 1 if and only if T is a regular tetrahedron, and q (T) approaches zero 

for poorly-shaped tetrahedra. 

3. BISECTION PROCEDURE BASED ON A SPECIAL TETRAHEDRON 

When a tetrahedron is bisected, the two resulting subtetrahedra are generally 
not similar to each other or the original tetrahedron. So we try to design a 
bisection procedure that creates a finite number of classes of similar tetrahedra. 
To this end, we need the special tetrahedron P shown in Figure 3. Let lqiqjl 
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qoFIGURE 2e d Q f Lm sad 

ql 

FIGURE 2. Tetrahedron Q for Lemmas I and 2 

denote the length of edge qiqj. The following two lemmas, which are proved 
in [10], are needed for Theorem 2 below. 

Lemma 1. Let Q(qo, ql, q2, q3) be a tetrahedron with Iqoql I = Iqoq2I and 
Iqiq31 = jq2q31, and let q be the midpoint of q1q2 (see Figure 2). Then 
Qi(qo, q, q, q3) is similar to Q2(qo, q, q2, q3). 

Lemma 2. Let Q(qo, qi, q2, q3) be a tetrahedron with Iqoqil = jq2q3j and 
Iqoq2I = jqjq31, and let q be the midpoint of qjq2 (see Figure 2). Then 
Qi (qo, qi, q, q3) is similar to Q2(qo, q, q2, q3). 

Theorem 2. In the first three levels of longest edge bisection applied to the special 
tetrahedron P, the subtetrahedra at the same level are similar to each other, and 
the subtetrahedra at the third level are all similar to P (see Figure 3). 

Proof. Let Pij = (pi + pj)/2, i < j. The longest edge of P(po, Pi, P2, P3) 

is P1P2 with IP1P21 = 2a. First, P is bisected into two subtetrahedra 
P1 (Po, P1 , P3, P12) and PI(Po, P2, P3, P12). Since IPOPI I = IPOP21 = v'6a/2 
and IP1P31 = IP2P31 = v72a, these two subtetrahedra are similar to each other by 
Lemma 1. Next, we only need to consider the subtetrahedron P1 (Po, P1, P3, P12), 
whose longest edge is P1P3 with IP1P31 = Vdria. It is bisected into two subtetra- 
hedra P2(po,p1,p12,p13) and P2(po,p3,p12,p13). Since IPOPII = IPOP31 = 

V'6a/2 and 1PIP121 = 1P3P121 = a, these two subtetrahedra are similar to 
each other by Lemma 1. Finally, we only need to consider the subtetrahedron 

PI(po, Pi , P12 , P13) , whose longest edge is PoPI with IPoP II = V'6a/2. It is bi- 
sected into two subtetrahedra P3(po, P12, P13, PoI) and P3(pI , P12, P13, PoI)- 
Since IPOP121 = 1PIP131 = a/V'r2 and IPOP131 = IP1P121 = a, these two subtetra- 
hedra are similar to each other by Lemma 2. 

Since P2(pl , P12, P13, PoI) is similar to P, it follows that after three 
levels of bisections, the eight subtetrahedra P3, P3, P3(po P12, P13, Po3), 
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p3(0, 0, a) 

g < P2(a, ?,?)P2 

/,P2(a, 0, 0) 

rO(0.) aPF2, 0) P 

p (-a,O0 0) 

FIGURE 3. Special tetrahedron P; other coordinates are 
po3(-a/2, 0,a/4 O), p02(a/2, 0,a/4, 2 ), P030, 2a/4, a/2), 
PI 3(-al2, ,0 a/2),. P23 (a12, ,0 a/2) 

P3(P3,P12,P13,po3), P3(po,P12,P23,po2), P3(P2,P12,P23,Po2), P0(po,P22, 

P23, P03) P (P3, P12 , P23, P03) are all similar to the original tetrahedron 
P. o 

It follows from Theorem 2 that if P is iteratively bisected by the longest edge 
to an arbitrary number of levels, any subtetrahedron at level 3k, 3k + 1, or 
3k+2 is similar to P(po, PI, P2, P3), PI (Po, PI, P3, P12), or p2(po, P P12, P13) 
respectively, for k = 0, 1, Hence, we define a subtetrahedron at level 3k, 
3k + 1, or 3k + 2 to be a tetrahedron of type PO, Pl, or p2, respectively. 

We now present a bisection procedure for iteratively bisecting any tetrahedron 
T to n levels. Let P be the special tetrahedron of Figure 3 such that T and 
P have the same volume. 

(a) Transform T to P by the affine transformation y - M-1 (P, T)x + bo . 
(b) Iteratively bisect P to n levels by always bisecting the longest edge. 
(c) Transform all subtetrahedra Pi of P back to subtetrahedra Ti of T 

using the inverse affine transformation y = M(P, T)x + b, . 

Note that in the subtetrahedra of T, the longest edge may not be the one 
bisected. 

4. PROPERTIES OF BISECTION PROCEDURE 

In this section, we prove the four properties of the bisection procedure stated 
in ? 1. Let g9n be the mesh of 2n subtetrahedra of T produced by n levels of 
bisection. Let R be the regular tetrahedron of Figure 1 such that T, P, and 
R have the same volume. 
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Theorem 3. The mesh gn is conforming. 

Proof. In view of the affine transformation used in the bisection procedure, 
it suffices to prove that the mesh y"n of subtetrahedra in P is conforming. 
By considering the first three levels of bisection of P, it is easily seen that 
at any level, each subtetrahedron of P has only one longest edge and all of 
the longest edges of the subtetrahedra have the same length (e.g., after the first 
level, the two subtetrahedra have longest edges P1P3 and P2P3, respectively, 
and IP1P3I = IP2P31 = Va, etc.). So the midpoint of any longest edge e is 
also a bisecting point of any other subtetrahedra incident on e. Hence , n is 
a conforming mesh. o 

In the above proof, we have assumed that each subtetrahedron is bisected 
to the same level. This is not necessary in order to get a conforming mesh. 
For example, after P is bisected, if only P1 (Po, Pi , P3, P12) is bisected at the 
first level, and the same for pl2(po, PI, P12, P13) at the second level, then the 
resulting mesh is still conforming. This property can be used to smoothly extend 
local refinements to adjacent tetrahedra. For the case when the bisection starts 
with more than one tetrahedron, it is not easy to guarantee the conformity of 
the resulting mesh by using the above procedure alone. In a later paper, we 
will present local refinement algorithms which use this procedure and others to 
guarantee conformity. 

Theorem 4. There are a finite number of classes of similar tetrahedra in all the 
?[n, n>O. 

Proof. We define two tetrahedra to be in the same equivalence class if one can 
be transformed into the other by translation and uniform scaling (i.e., the scale 
factors for the three coordinate axes are the same). So any two tetrahedra in the 
same equivalence class are similar to each other after any affine transformation. 
In order to prove the theorem, it suffices to prove that all subtetrahedra Pin, 

n > 0, generated by the bisection procedure are only in a finite number of 
equivalence classes. First we prove that the tetrahedra of type P0 are only in a 
finite number of equivalence classes. 

After three levels of bisection, by Theorem 2, all eight subtetrahedra P3 
are similar to P. Let these tetrahedra be labeled P3(pol , PI, P12, P13), 

P2(Po2,P12,P2,P23), P3(poi,Po,P13,P12), P4(Po3,PI3,Po,P12), P5(Po3,P3,P12,PI3), 

6(P02, Po, P23, P12), P7(PO3, P3, P12, P23), and P8(Po3, P23, PO, P12). Let Mi 
= M(P, Pt), 1 < i < 8. From the coordinates of Figure 3, we obtain 
M1 = M2 = 1/2 I, where I is the identity matrix, and 

M3= v4 2 O-Vi M, 0= 4 V2 O -X|, -1 -~~~ 
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M5=2[ 1 o] 7 M6=4 [- - O - V'2j 

M7=2Lj[ o]J 4M - - -JI 

Note that the vertices of the P3 are ordered so that Mi= 1/2 Qi, where Qi is 
an orthogonal matrix. 

Let 

Fal 0 01 0 0 a,- 
diag(aI, a2, a3)= 0 a2 0 , skew(al, a2, a3)= 0 a2 01. 

[O O a3] La3 0 0] 

The following equations can be obtained by straightforward computation: 

M6=diag(-1, 1, I)M3, M8=diag(-1, 1, I)M4, M32= 1/4I, 

M3M4 = 1/4 diag(- 1, -1, 1), M4M3 = 1/2 diag(- 1, -1, 1O)M4, 
M3M5 = 1/2 diag(1 , - 1, 1)M3, M5M3 = 1/2 skew(- 1, 1, -1 )M3, 
M3M6A= 1/2 skew(- 1, -1, 1)M4, M6M3= 1/4 diag(- 1 1, ,1), 
M3M7 = 1/2 diag(- 1, 1, -1)M4, M7M3= 1/2 skew( 1, I -1)M3, 
M3M8 = 1/2 skew(- 1, -1, 1 )M3, M8M3= 1/2 diag(1, -1, 1 )M4, 
M42 = 1/2 diag(-1, -1, 1)M3, M4M5 = 1/2 skew(1, 1, 1)M4, 
M5M4A= 1/2 skew(-1, 1, -1)M4, M4M6A= 1/4 skew(-1, 1, -1i), 
M6M4 = 1/4 diag(1, -1, 1), M4M7 = 1/2 skew(- 1, -1, - 1)M3, 
M7M4A= 1/2 skew(l, 1, -1)M4, M4M8A= 1/4 skew(-l, -1, 1), 
M8M4 = 1/2 diag(1, -1, 1)M3, MA2 = 1/4I, 
M5M6 = 1/2 skew(-1 , 1, 1)M3, M6M5 = 1/2 diag(-l, -1, 1)M3, 
M5M7 = 1/4 diag(l, 1, -1), M7M5 = 1/4 diag(-1, 1, 1), 
M5M8 = 1/2 skew(-1, 1, 1)M4, M8M5 = 1/2 skew(-1, 1, 1)M4, 
M62 = 1/2 skew(1, -1, 1 )M4, M6M7 = 1/2 diag(1, 1, -1 )M4, 
M7M6 = 1/2 skew(l, 1, 1)M3, M6M8 = 1/2 skew(l, -1, 1)M3, 
M8M6 = 1/4 skew(1 , 1, -1), M72 = 1/4 diag(-I , 1, -1), 
M7M8 = 1/2 skew(l, 1, 1)M4, M8M7 = 1/2 skew(l, -1, -1)M3, 
M82 = 1/4 skew(1, -1, 1 ). 

After six levels of bisection, with a suitable ordering of vertices of P?, we 
get M(P, P6) = M(P>, P?)M(P, P3), where P? is a subtetrahedron of Pj3so 

Al(P, p6)= p6(P3)-M[ -= MJP73(M.P)-1lM= MJP13P-1l1Al1 

for some 1. By induction, after 3k levels of bisection, for each subtetrahedron 
p3k with a suitable ordering of vertices p .3j, we have i , 

pj= Ml11A12 ...AllkPi +b?k 0?1? <3, 
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where each Mlm, 1 < m < k, is one of the Mi, 1 < i < 8. Let ? be the set 
of all diagonal and skew diagonal matrices with elements 1 or - 1 . Obviously, 
Y is closed under matrix multiplication, and I5J = 23 + 23 = 16. So, by the 
above equations, M1IM12 ... Mlk = fDM, where f is a scale factor, D is an 
element of Y, and M is either I, M3, or M4. Note that D and -D can 
be considered to be the same matrix of 5 because of the factor f . Therefore, 
the number of different equivalence classes of tetrahedra of type P0 in Y 1, 
n > 0, is < 3 x 8 = 24. Note that a type PI tetrahedron is generated by 
bisecting the longest edge of a type P0 tetrahedron. Since the longest edge of 
a tetrahedron is still the longest edge under translation and uniform scaling, 
each one of the 24 possible equivalence classes of tetrahedra of type P0 creates 
two equivalence classes of tetrahedra of type PI . So the number of different 
equivalence classes of tetrahedra of type P1 is < 2 x 24 = 48. By a similar 
argument, the number of different equivalence classes of tetrahedra of type p2 
is < 2 x 48 = 96. Hence, the total number of classes of similar tetrahedra in 
all the 5n, n > 0, is finite and bounded above by 168. 0 

From Theorem 4, it follows that I (Tn) > c I (T) for some constant cl that 
may depend on T. The following theorem establishes that cl is independent 
of T. 

Theorem 5. For any tetrahedron T1 in $"n, we have 

(7) I(V)>clq(T), 

where cl is a positive constant independent of T. 

Proof. Let M(P, T) and M(R, P) be the two matrices involved in the affine 
transformations from P to T and R to P, respectively. Using the notation 
of Definition 1, we have 

T = M(P, T)P = M(P, T)M(R, P)R. 

From step (c) of the bisection procedure, the tetrahedron Tn is transformed 
from Pn using M(P, T), so 

Tin = M (P , T)Pin. 

If P7 is a tetrahedron of type PO, then with a suitable ordering of vertices 
of P, we have Pn = aQP, where a is a positive constant and Q is an 
orthogonal matrix, since P7 is similar to P. If P7 is a tetrahedron of type Pl, 
then Pn = aQM(P, PI)P, where a is a positive constant, Q is an orthogonal 
matrix, and PI is any of the two tetrahedra in Y I . If P7 is a tetrahedron of 
type p2, then pi = kQM(P, Pk)P, where a is a positive constant, Q is an 
orthogonal matrix, and P2 is any of the four tetrahedra in y?52. 

Let Rn be the regular tetrahedron of Figure 1 having the same volume as 
T1n. Then 

Tn = M(P, T)CM(R, P)Rn, 
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where C is one of Q, V2 QM(P, PI), or Y4 QM(P, P2), depending on the 
type of pn . By uniqueness, M(P, T)CM(R, P) = M(Rn, T1). From (5) and 
(6), 

3 

(8) n(I) trace(A(R, T)) 

trace((M(P, T)M(R, P))TM(P, T)M(R, P))' 

'(17Z) = trace(A(Rn, T1)) 

trace((M(P, T)CM(R, P))TM(P, T)CM(R, P)) 

Let lIBIIF denote the Frobenius norm of matrix B [2], i.e., 

IIBIIF = (trace(BTB))l/2 

is the square root of the sum of squares of the elements of B. From (8) and 
(9), 

(10) i(T7) = IIM(P, T)M(R, P)112 

Since IlQll2 = 3 for a 3 x 3 orthogonal matrix Q and l|AB IF < IIAIIFIIBIIF 
for any 3 x 3 matrices A and B, we have 

(1 1) 

IM(P, T)CM(R, p) 11 2< JIM(P, T)M(R, p) 11 2IIM-'(R, P)CM(R, p) 112 

< 3 IlM(P, T)M(R, P)l lA2IM-1(R, p) II 2JM(R, P)ll1 max(I, SI, S2), 

where 

s1 =22/3 max (11M(P, Pkl)1) and s2=2413 max (|IM(P, P2)112) 
1<k<2 k1 <k<4kF 

From (10) and (11), we get il(T7i)/il(T) > c1, where 

Cl [3 1 M-I(R, p)ll 2 IAM(R, p)ll2 max( , SI, S2)] 

Theorem 6. For any tetrahedron T7 in 5n, we have 

w(her) < C2( 1 p2)no3sc t (T), 

where C2 is a positive constant independent of T. 
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Proof. By Theorem 1, 

(12) (T) 12(3v )2/3 

Li=l i,O 

where v is the volume of T and the li, 0 are the lengths of the edges of T. At 
each level of bisection, the volume of a subtetrahedron is decreased by a factor 
of 2, so after n levels of bisection, 

(13) (Tn) = 12(1/2)2n/3(3v)2/3 

Z6 J? Ei=l i,n 

where the li,n are the lengths of the edges of 17. Substituting (12) and (13) 
in (7) yields 

6 6 

Z12 < (1 /cl) (1 /2)2n/3 Zl?,o, 
i=l i=l 

where cl is a positive constant independent of T. So 
6 6 

J(Tn )2 < E P < (1 /cl) (1 /2)2n/3 12 0 < (1/cI)(1/2)2n13 635(T)2. 

That is, J(1n) < c2(1/2)nl3j(T), where c2 = 6/c . o 

5. ESTIMATE OF CONSTANTS 

In this section, we obtain an estimate of the constant cl in Theorem 5, which 
then provides an estimate of the constant c2 in Theorem 6. Our derivation 
of the estimate of cl starts from (10) in the proof of Theorem 5, since (11) 
provides an estimate that is too small. At the first two levels of bisection, we 
use the tetrahedra PI (P12, PI , P3, po) and Pl(p12, Po, Pi, P13)- 

By the singular value decomposition [2], 

M(P, T) = Q, diag(VAIj, VA2, 5V'i)Q2, 

where Qi, Q2 are orthogonal matrices and Al, A2, A3 are the eigenvalues of 

A(P, T) ( v/N, v/4, V are the singular values of M(P, T)). Similarly, 

M(R, P) = Q3diag(v/,uli, V/,Y2, V/YHi)Q4, 

rY M(P, PI)M(R, P) = Q5diag(v/fi7 , v/Y2, v'Y23)Q6, 

and 
aY~IM(P, P2)M(R, P) = Q7diag(v/f3, v/Y, v/3)Qs, 

where the Qi are orthogonal matrices and the uij are eigenvalues. It follows 
that 

IIM(P, T)M(R, p) I IF 

=ldiag(VA, ,V%2, VA)Q2Q3 diag(V,1 , 1)112F 
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IIM(P, T)CM(R, P) II2 

- =diag(V'-Y, V'2 , V?-i3)Q9diag(v7i I , Y, 3)II1, 

where Qg is an orthogonal matrix and i is 1, 2, or 3. For any orthogonal matrix 
Q, let S = diag(v?7i[, v?I, V'4)Qdiag(+/WI, V+/E2, +/E3). By carrying out 
the two matrix multiplications, it is easy to see that 

min(uil , ui2, 9i3)(L1 + )2 + A3) 

(16) < IISI12 < max(1ui1, 1U42, 1i3)(Al + )2 + )3)- 

From (14), (15), and (16), it follows that 

(17) IIM(P, T)M(R, P)112 > (AI + )2 + )3) mmin (Ilj) , 

(18) IIM(P, T)CM(R, P)II 2< (? l + 2 + 3) max Gui1). F - 
~~~1?i,]<3 

(i) 

Substituting (17) and (18) into (10), yields 

(19) C(Tin~~jj) >minI<j<.5AUIj) 
(1 9)I> I (T) - maxI <j,j<3 (/4j)' 

We now compute the eigenvalues upi. Using the coordinates of Figures 1 
and 3, we obtain 

0 2 0 
M(R, P) = PR1 - 6 [i4/3 0 - /6 

So in decreasing order, Iut, = 4/14, u12 = (9 + V'l7)/(8Y4), and u13 = 

(9 - V17)/(8Y4). From 

--V3/3 1 -V6/6- 
r2 M(P, P')M(R, P) O O V3/2 

L/X/3 1 -V6 

we get u21 = 2, u22 = (7 + v'17)/8, and u23 = (7 - VfT7)/8 in decreasing 
order. From 

[- /3 -1 -V/12 
VM(P, P2)M(R, P) = X V6/6 -V2/2 -V3/6 

0 0 \F 

we get u31 = X (2 + V)/2, u32 = X/2, and u33 = XY (2 -V)/2 in 
decreasing order. 

From (19), jj(T7)/j(T) > cl = u13/131 = X (9 - V17)(2 - v/2)/32 = 

0.1417. Then it follows from c2 = 16/c that c2 = 6.5068. By using a 
different approach, it may be possible to obtain better estimates of cl and c2, 
but we believe that our current estimates can be improved by at most a small 
factor (unless a better P tetrahedron can be found). 
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